Introduction To The t Distribution
15 Jan 2018Prologue To The t Distribution
Why Do We Need The t Distribution?
As we know that $\frac {\overline {X_n}-\mu}{\sigma/\sqrt n}\sim ɸ(0,1)$, by the central limit theorem, when $n\rightarrow\infty$, the term $\frac {\overline {X_n}-\mu}{S/\sqrt n}$ approximates $\frac {\overline {X_n}-\mu}{\sigma/\sqrt n}$, where
➀$S$ is the sample deviation.
➁$\sigma$ is the population deviation.After experiments over so many years, statisticians have it that when sample size is less than 30, $\frac {\overline {X_n}-\mu}{S/\sqrt n}\not\sim ɸ(0,1)$ as a conclusion, for $n<30$, it would be insufficient the quantity of sample size to be distributed in normal distribution.
That’s why we need to have t distribution, by usual, we take $T$=$\frac {\overline {X_n}-\mu}{S/\sqrt n}$.
Expand The Definition Of The t Distribution
Let T to be a random variable, expand from where it is defined:
$T$=$\frac {\overline {X_n}-\mu}{S/\sqrt n}$
$\;\;$=$\frac {\overline {X_n}-\mu}{\sigma/\sqrt n}$/$\frac {S/\sqrt n}{\sigma/\sqrt n}$
$\;\;$=$\frac {Z}{S/\sigma}$, where $Z\sim ɸ(0,1)$
$\;\;$=$\frac {Z}{\sqrt {S^2/\sigma^2}}$
$\;\;$=$\frac {Z}{\sqrt {\frac {\chi_{n-1}^2}{n-1}}}$
, where we have:
➀$\chi_{n-1}^2$=$(n-1)\cdot S^2$/$\sigma^2$
➁$n-1$ is the degree of freedom.
The t Distribution PDF
The PDF of t distribution is given by:
$f_{T}(t)$=$\frac {\Gamma(\frac {\nu+1}{2})}{\sqrt {\pi\cdot\nu}\cdot\Gamma(\frac {\nu}{2})}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}$,
where $\nu$ is the degree of freedom, $-\infty<t<\infty$.proof:
➀please recall that $T$=$\frac {Z}{\sqrt {\frac {\chi_{n-1}^2}{n-1}}}$, and we learn the deduction of the F distribution joint PDF.
Take $f_Z(z)$=$\frac {1}{\sqrt {2\cdot\pi}}\cdot e^{-\frac {z^2}{2}}$, where $-\infty<z<\infty$, $Z\sim ɸ(0,1)$.
Take $f_{\chi_{\nu}^2}(x)$=$\frac {x^{\frac {\nu}{2}-1}}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\cdot e^{-\frac {x}{2}}$, where $0<x<\infty$, $X \sim\chi_{\nu}^2$.➁express the joint PDF in below form:
$f_{Z,\chi_{\nu}^2}(z,x)$=$f_Z(z)\cdot f_{\chi_{\nu}^2}(x)$, where $z\in Z$, $x\in X$
$\Rightarrow F_{Z,\chi_{\nu}^2}(z,x)$=$\int_{-\infty}^{\infty}\int_{0}^{\infty}f_Z(z)\cdot f_{X}(x)\operatorname dx\operatorname dz$
For the simplicity of notation, we use $f_{X}(x)$ for $f_{\chi_{\nu}^2}(x)$, since $X \sim\chi_{\nu}^2$, and the $F_{Z,\chi_{\nu}^2}(z,x)$ is the CDF(cumulative distributed function).➂by the definition of $T$=$\frac {Z}{\sqrt {\frac {\chi_{n-1}^2}{n-1}}}$
Let $t$=$z$/$\sqrt\frac {x}{\nu}$, and, why we use $x$, not $x^2$?
Be noted that $x$ is one sample distributed in $\chi_{\nu}^2$. Don’t get confused!!➃let $z$=$\frac {t\cdot\sqrt x}{\sqrt \nu}$, $\operatorname dz$=$\frac {\sqrt x}{\sqrt \nu}\cdot\operatorname dt$
We can express $z$ in terms of $t$, which then in turns expressed in terms of $x$.$F_{Z,\chi_{\nu}^2}(z,x)$
$=F_{T,\chi_{\nu}^2}(t,x)$, where $t \in T$
$=\int_{-\infty}^{\infty}\int_{0}^{\infty}f_Z(\frac {t\cdot\sqrt x}{\sqrt \nu})\cdot f_{X}(x)\operatorname dx\frac {\sqrt x}{\sqrt \nu}\cdot\operatorname dt$
$=\int_{-\infty}^{\infty}\int_{0}^{\infty}\frac {1}{\sqrt {2\cdot\pi}}\cdot e^{-\frac {t^2}{2}\cdot\frac {x}{\nu}}\cdot\frac {x^{\frac {\nu}{2}-1}\cdot e^{-\frac {x}{2}}}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\operatorname dx\frac {\sqrt x}{\sqrt \nu}\cdot\operatorname dt$
$=\frac {1}{\sqrt {2\cdot\pi}\cdot\sqrt\nu}\cdot\frac {1}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\int_{-\infty}^{\infty}\int_{0}^{\infty}x^{\frac {\nu+1}{2}-1}\cdot e^{-(\frac {t^2}{2}\cdot\frac {x}{\nu}+\frac {x}{2})}\operatorname dx\operatorname dt$➄let $w$=$\frac {t^2}{2}\cdot\frac {x}{\nu}+\frac {x}{2}$=$\frac {(t^2+\nu)\cdot x}{2\cdot\nu}$
, then $\operatorname dw$=$\frac {t^2+\nu}{2\cdot\nu}\cdot\operatorname dx$
, and $x$=$\frac {2\cdot\nu}{t^2+\nu}\cdot w$
, therefore $\operatorname dx$=$\frac {2\cdot\nu}{t^2+\nu}\cdot\operatorname dw$$F_{T,\chi_{\nu}^2}(t,x)$
$=\frac {1}{\sqrt {2\cdot\pi}\cdot\sqrt\nu}\cdot\frac {1}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\int_{-\infty}^{\infty}\int_{0}^{\infty}(\frac {2\cdot\nu}{t^2+\nu}\cdot w)^{\frac {\nu+1}{2}-1}\cdot e^{-w}\cdot\frac {2\cdot\nu}{t^2+\nu}\cdot\operatorname dw\operatorname dt$
$=\frac {1}{\sqrt {2\cdot\pi}\cdot\sqrt\nu}\cdot\frac {1}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\cdot\Gamma(\frac {\nu+1}{2})\int_{-\infty}^{\infty}(\frac {2\cdot\nu}{t^2+\nu})^{\frac {\nu+1}{2}}\operatorname dt$
, where $\Gamma(\frac {\nu+1}{2})$=$\int_{0}^{\infty}e^{-w}\cdot w^{\frac {\nu+1}{2}-1}\operatorname dw$
$=\frac {1}{\sqrt {2\cdot\pi}\cdot\sqrt\nu}\cdot\frac {1}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\cdot\Gamma(\frac {\nu+1}{2})\int_{-\infty}^{\infty}(\frac {t^2+\nu}{2\cdot\nu})^{-\frac {\nu+1}{2}}\operatorname dt$➅simplify the notation from $F_{T,\chi_{\nu}^2}(t,x)$ to $F_{T}(t)$, then:
$F_{T,\chi_{\nu}^2}(t,x)$
$=F_{T}(t)$
$=\frac {1}{\sqrt {2\cdot\pi}\cdot\sqrt\nu}\cdot\frac {1}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\cdot\Gamma(\frac {\nu+1}{2})\int_{-\infty}^{\infty}(\frac {t^2+\nu}{2\cdot\nu})^{-\frac {\nu+1}{2}}\operatorname dt$$f_{T}(t)$=$\frac {\operatorname dF_{T}(t)}{\operatorname dt}$
$=\frac {1}{\sqrt {2\cdot\pi}\cdot\sqrt\nu}\cdot\frac {1}{2^{\frac {\nu}{2}}\cdot\Gamma(\frac {\nu}{2})}\cdot\Gamma(\frac {\nu+1}{2})\cdot (\frac {t^2+\nu}{2\cdot\nu})^{-\frac {\nu+1}{2}}$After the deduction, we finally have it that:
$f_{T}(t)$=$\frac {\Gamma(\frac {\nu+1}{2})}{\sqrt {\pi\cdot\nu}\cdot\Gamma(\frac {\nu}{2})}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}$
Moments Of The t Distribution
Begin from PDF of t distribution, we’d like to further regularize it:
$f_{T}(t)$
$=\frac {\Gamma(\frac {\nu+1}{2})}{\sqrt {\pi\cdot\nu}\cdot\Gamma(\frac {\nu}{2})}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}$
$=\frac {1}{\sqrt\nu}\cdot\frac {\Gamma(\frac {\nu}{2}+\frac {1}{2})}{\Gamma(\frac {\nu}{2})\cdot\Gamma(\frac {1}{2})}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}$
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}$
, where $\sqrt\pi$=$\Gamma(\frac {1}{2})$, $\frac {\Gamma(\frac {\nu}{2}+\frac {1}{2})}{\Gamma(\frac {\nu}{2})\cdot\Gamma(\frac {1}{2})}$=$\beta(\frac {\nu}{2},\frac {1}{2})^{-1}$The moments would be a cofactor in the expect value and variance of the t distribution.
For any $t\in T$, where $T$ is a random variable in t distribution. The k-th ordinary moment would be:
$E_{k}\lbrack t\rbrack$
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\int_{-\infty}^{\infty}t^{k}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}\operatorname dt$
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\cdot(\int_{-\infty}^{0}t^{k}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}\operatorname dt$+$\int_{0}^{\infty}t^{k}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}\operatorname dt)$
Expect Value Of The t Distribution
It’s the case when $k=1$:
$\int_{-\infty}^{0}t^{1}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}\operatorname dt$=$-\int_{0}^{\infty}t^{1}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}\operatorname dt$When $k=1$, integrate from negative infinity to $0$, is equivalent to negate the integration from $0$ to the infinity.
Therefore, $\mu_{1}$=$E\lbrack t\rbrack$=$0$, the expect value is $0$.
Variance Of The t Distribution
➀the variance involves the 2nd order moment, it is the case when $k=2$, integrate from negative infinity to $0$, is equivalent to the integration from $0$ to the infinity. Therefore, we have it that:
$\mu_{2}$=$E_{2}\lbrack t\rbrack$
$=E\lbrack t^{2}\rbrack$
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\cdot 2\cdot\int_{0}^{\infty}t^{2}\cdot(1+\frac {t^2}{\nu})^{-\frac {\nu+1}{2}}\operatorname dt$➁take $w$=$\frac {t^{2}}{\nu}$, then $t$=$\sqrt w\cdot\nu$
, and $\operatorname dw$=$\frac {2\cdot t}{\nu}\cdot\operatorname dt$, $\operatorname dt$=$\frac {\nu}{2\cdot t}\cdot\operatorname dw$➂expand from the 2nd order moment: $E_{2}\lbrack t\rbrack$
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\cdot 2\cdot\int_{0}^{\infty}\frac {\nu}{2\cdot t}\cdot t^{2}\cdot(1+w)^{-\frac {\nu+1}{2}}\operatorname dw$
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\cdot 2\cdot\int_{0}^{\infty}\frac {\nu}{2}\cdot(w\cdot\nu)^{\frac {1}{2}}\cdot(1+w)^{-\frac {\nu+1}{2}}\operatorname dw$
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\cdot 2\cdot\frac {(\nu)^{\frac {3}{2}}}{2}\int_{0}^{\infty}(w)^{\frac {1}{2}}\cdot(1+w)^{-\frac {\nu+1}{2}}\operatorname dw$➃investigate the power term of $w$, $1+w$, they could be refined:
$\frac {1}{2}$=$\frac {3}{2}-1$, $-\frac {\nu+1}{2}$=$-\frac {3}{2}-\frac {\nu-2}{2}$➄continue above equality:
$=\frac {1}{\sqrt\nu}\cdot\frac {1}{\beta(\frac {\nu}{2},\frac {1}{2})}\cdot(\nu)^{\frac {3}{2}}\cdot\beta(\frac {3}{2},\frac {\nu-2}{2})$
$=\nu\cdot\frac {\Gamma(\frac {\nu}{2}+\frac {1}{2})}{\Gamma(\frac {\nu}{2})\cdot\Gamma(\frac {1}{2})}\cdot\frac {\Gamma(\frac {3}{2})\cdot\Gamma(\frac {\nu-2}{2})}{\Gamma(\frac {3}{2}+\frac {\nu-2}{2})}$➅further simplify below terms:
$\Gamma(\frac {3}{2})$=$\frac {1}{2}\cdot\Gamma(\frac {1}{2})$,
$\Gamma(\frac {3}{2}+\frac {\nu-2}{2})$=$\Gamma(\frac {\nu}{2}+\frac {1}{2})$, and,
As to $\Gamma(\frac {\nu-2}{2})$, begin by $\Gamma(\frac {\nu}{2})$:
$\Gamma(\frac {\nu}{2})$=$\frac {\nu-2}{2}\cdot\Gamma(\frac {\nu}{2}-1)$
thus, $\Gamma(\frac {\nu-2}{2})$=$\frac {2}{\nu-2}\cdot\Gamma(\frac {\nu}{2})$➆put it all together:
$E_{2}\lbrack t\rbrack$
$=\nu\cdot\frac {\Gamma(\frac {\nu}{2}+\frac {1}{2})}{\Gamma(\frac {\nu}{2})\cdot\Gamma(\frac {1}{2})}\cdot\frac {\frac {1}{2}\cdot\Gamma(\frac {1}{2})\cdot\frac {2}{\nu-2}\cdot\Gamma(\frac {\nu}{2})}{\Gamma(\frac {\nu}{2}+\frac {1}{2})}$
$=\frac {\nu}{\nu-2}$Finally, we can deduce it out the variance:
$Var\lbrack t\rbrack$
$=E\lbrack t^{2}\rbrack$-$E\lbrack t\rbrack$
$=E_{2}\lbrack t\rbrack$-$E\lbrack t\rbrack$
$=\frac {\nu}{\nu-2}$Cautions must made that the variance is only meaningful, when $\nu>2$, otherwise, it doesn’t exist.