Markov Inequality
27 Feb 2018Prologue To The Markov Inequality
Markov Inequality Theorem
Given that $Z$ is a non-negative random variable, then for all $t\ge 0$, we have $P(Z\ge t)\le \frac {E\lbrack Z\rbrack}{t}$
proof::mjtsai1974➀let’s begin by the definition of expect value of a random variable.
$E\lbrack Z\rbrack$=$\sum(P(Z\ge t)\cdot\{Z\vert Z\ge t\}$+$P(Z<t)\cdot\{Z\vert Z<t\})$
, where we denote $\{Z\vert Z\ge t\}$=$1$,$\{Z\vert Z<t\}$=$1$
➁then:
$E\lbrack Z\rbrack\ge\sum P(Z\ge t)\cdot\{Z\vert Z\ge t\}$…this must hold
$\;\;\;\;\;\;\;$=$P(Z\ge t)\cdot\sum \{Z\vert Z\ge t\}$
➂choose $Q_t$=$\sum \{Z\vert Z\ge t\}$ to be the total number of events in $\{Z\vert Z\ge t\}$, then:
$\frac {E\lbrack Z\rbrack}{Q_t}\ge P(Z\ge t)$, where $Q_t$=$0$,$1$,$2$,…
➃take $Q_t=t$ could also hold to have $\frac {E\lbrack Z\rbrack}{t}\ge P(Z\ge t)$
We just prove that $P(Z\ge t)\le \frac {E\lbrack Z\rbrack}{t}$