Chernoff Bounds
01 Mar 2018Prologue To The Chernoff Bounds
Chernoff Bounds
Let $Z$ be any random variable, then for any $t>0$,
$\;\;P(Z\ge E\lbrack Z\rbrack+t)\le\underset{\lambda\ge 0}{min}E\lbrack e^{\lambda\cdot (Z-E\lbrack Z\rbrack)}\rbrack\cdot e^{-\lambda\cdot t}$=$\underset{\lambda\ge 0}{min}M_{Z-E\lbrack Z\rbrack}(\lambda)\cdot e^{-\lambda\cdot t}$
and
$\;\;P(Z\le E\lbrack Z\rbrack-t)\le\underset{\lambda\ge 0}{min}E\lbrack e^{\lambda\cdot (E\lbrack Z\rbrack-Z)}\rbrack\cdot e^{-\lambda\cdot t}$=$\underset{\lambda\ge 0}{min}M_{E\lbrack Z\rbrack-Z}(\lambda)\cdot e^{-\lambda\cdot t}$
; where $M_{Z}(\lambda)$=$E\lbrack exp(\lambda\cdot Z)\rbrack$ is the moment generating function of $Z$.Proof:
➀for any $\lambda>0$, we have:
$Z\ge E\lbrack Z\rbrack+t$
$\Leftrightarrow e^{\lambda\cdot Z}\ge e^{\lambda\cdot (E\lbrack Z\rbrack+t)}$
Or equivalently,
$Z-E\lbrack Z\rbrack\ge t$
$\Leftrightarrow e^{\lambda\cdot (Z-E\lbrack Z\rbrack)}\ge e^{\lambda\cdot t}$
➁by Markov inequality, below holds:
$P(\left|Z-E\lbrack Z\rbrack\right|\ge t)$
$=P(e^{\lambda\cdot (Z-E\lbrack Z\rbrack)}\ge e^{\lambda\cdot t})\le E\lbrack e^{\lambda\cdot (Z-E\lbrack Z\rbrack)}\rbrack\cdot e^{-\lambda\cdot t}$
➂the second inequality could be proved in the similar way.To be believed that a reasonable upper bound could be built by choosing appropriate $\lambda$.
Chernoff Bounds Extension
We can further extend Chernoff bounds with summation of multiple random varaibles.
➀suppose that all $Z_i$’s are independent and zero meanfor all $i$, then we have it that:
$\;\;M_{Z_1+…+Z_n}=\prod_{i=1}^{n}M_{Z_i}(\lambda)$
, which is a consequence of the moment generating function, because the independence of each $Z_{i}$.
$E\lbrack exp(\lambda\cdot\sum_{i=1}^{n}Z_{i})\rbrack$
=$E\lbrack \prod_{i=1}^{n}exp(\lambda\cdot Z_{i})\rbrack$
=$\prod_{i=1}^{n}E\lbrack exp(\lambda\cdot Z_{i})\rbrack$
➁by Chernoff inequality, for any $\lambda>0$,
$P(\sum_{i=1}^{n}Z_{i}\ge t)\le \prod_{i=1}^{n}E\lbrack exp(\lambda\cdot Z_{i})\rbrack\cdot e^{-\lambda\cdot t}$
$\Leftrightarrow P(\sum_{i=1}^{n}Z_{i}\ge t)\le (E\lbrack exp(\lambda\cdot Z_{1})\rbrack)^{n}\cdot e^{-\lambda\cdot t}$