Symmetrization
05 Mar 2018Prologue To The Symmetrization
The Symmetrization
Given a bounded random variable Z∈[a,b], we perform multiple tests of it with instances of Z duplicated, choose one of the clones to be Z′, so that Z′∈[a,b] and E[Z]=E[Z′].
proof::mjtsai1974
There exists some properties:
[1]EZ[eZ−E[Z]]≤EZ[EZ′[eZ−Z′]]
[2]P(|Z−E[Z]|≥t)=P(|Z−E[Z′]|≥t)
≤E[eλ⋅E[|Z−Z′|]]⋅e−λ⋅t
[3]EZ[EZ′[eλ⋅(Z−Z′)]]≤e(λ⋅(b−a))22➀by given, E[Z]=E[Z′], then,
EZ[Z−E[Z]]=EZ[Z−E[Z′]]
And according to the Jensen's inequality, we have it that
EZ[eZ−E[Z]]
=EZ[eZ−E[Z′]]
≤EZ[EZ′[eZ−Z′]]
➁by the Chernoff bounds, we can have
P(|Z−E[Z]|≥t)
=P(|Z−E[Z′]|≥t)
=P(eλ⋅|Z−E[Z′]|≥eλ⋅t)
≤E[eλ⋅|Z−E[Z′]|]⋅e−λ⋅t
≤E[eλ⋅E[|Z−Z′|]]⋅e−λ⋅t
➂given that S∈{+1,−1}, a Rademacher random variable, and S⋅(Z−Z′) and Z−Z′ have the same distribution, it implies that
EZ[EZ′[eZ−Z′]]
=EZ[EZ′[eS⋅(Z−Z′)]]
=EZ,Z′[ES[eS⋅(Z−Z′)]]
Then, below holds,
EZ[EZ′[eλ⋅(Z−Z′)]]
=EZ[EZ′[eS⋅λ⋅(Z−Z′)]]
=EZ,Z′[ES[eS⋅λ⋅(Z−Z′)]]
➃by MGF, we have below holds
ES[eS⋅λ⋅(Z−Z′)]≤e(λ⋅(Z−Z′))22
Because |Z−Z′|≤(b−a) guarantees (Z−Z′)2≤(b−a)2 , then
ES[eS⋅λ⋅(Z−Z′)]≤e(λ⋅(b−a))22
Therefore, EZ[EZ′[eλ⋅(Z−Z′)]]≤e(λ⋅(b−a))22