mjtsai1974's Dev Blog Welcome to mjt's AI world

Symmetrization

Prologue To The Symmetrization

In machine learning, statistics, probability theory, the symmetrization is commonly used to relate the random variables belonging to the same distribution.

The Symmetrization

Given a bounded random variable Z[a,b], we perform multiple tests of it with instances of Z duplicated, choose one of the clones to be Z, so that Z[a,b] and E[Z]=E[Z].
There exists some properties:
[1]EZ[eZE[Z]]EZ[EZ[eZZ]]
[2]P(|ZE[Z]|t)=P(|ZE[Z]|t)
E[eλE[|ZZ|]]eλt
[3]EZ[EZ[eλ(ZZ)]]e(λ(ba))22

proof::mjtsai1974

➀by given, E[Z]=E[Z], then,
EZ[ZE[Z]]=EZ[ZE[Z]]
And according to the Jensen's inequality, we have it that
EZ[eZE[Z]]
=EZ[eZE[Z]]
EZ[EZ[eZZ]]
➁by the Chernoff bounds, we can have
P(|ZE[Z]|t)
=P(|ZE[Z]|t)
=P(eλ|ZE[Z]|eλt)
E[eλ|ZE[Z]|]eλt
E[eλE[|ZZ|]]eλt
➂given that S{+1,1}, a Rademacher random variable, and S(ZZ) and ZZ have the same distribution, it implies that
EZ[EZ[eZZ]]
=EZ[EZ[eS(ZZ)]]
=EZ,Z[ES[eS(ZZ)]]
Then, below holds,
EZ[EZ[eλ(ZZ)]]
=EZ[EZ[eSλ(ZZ)]]
=EZ,Z[ES[eSλ(ZZ)]]
➃by MGF, we have below holds
ES[eSλ(ZZ)]e(λ(ZZ))22
Because |ZZ|(ba) guarantees (ZZ)2(ba)2 , then
ES[eSλ(ZZ)]e(λ(ba))22
Therefore, EZ[EZ[eλ(ZZ)]]e(λ(ba))22