Symmetrization
05 Mar 2018Prologue To The Symmetrization
The Symmetrization
Given a bounded random variable $Z\in\lbrack a,b\rbrack$, we perform multiple tests of it with instances of $Z$ duplicated, choose one of the clones to be $Z’$, so that $Z’\in\lbrack a,b\rbrack$ and $E\lbrack Z\rbrack$=$E\lbrack Z’\rbrack$.
proof::mjtsai1974
There exists some properties:
[1]$E_Z\lbrack e^{Z-E\lbrack Z\rbrack}\rbrack\le E_Z\lbrack E_{Z’}\lbrack e^{Z-Z’}\rbrack\rbrack$
[2]$P(\left|Z-E\lbrack Z\rbrack\right|\ge t)$=$P(\left|Z-E\lbrack Z’\rbrack\right|\ge t)$
$\le E\lbrack e^{\lambda\cdot E\lbrack\left|Z-Z’\right|\rbrack}\rbrack\cdot e^{-\lambda\cdot t}$
[3]$E_Z\lbrack E_{Z’}\lbrack e^{\lambda\cdot (Z-Z’)}\rbrack\rbrack\le e^{\frac {(\lambda\cdot (b-a))^{2}}{2}}$➀by given, $E\lbrack Z\rbrack$=$E\lbrack Z’\rbrack$, then,
$E_Z\lbrack Z-E\lbrack Z\rbrack\rbrack$=$E_Z\lbrack Z-E\lbrack Z’\rbrack\rbrack$
And according to the Jensen's inequality, we have it that
$E_Z\lbrack e^{Z-E\lbrack Z\rbrack}\rbrack$
=$E_Z\lbrack e^{Z-E\lbrack Z’\rbrack}\rbrack$
$\le E_Z\lbrack E_{Z’}\lbrack e^{Z-Z’}\rbrack\rbrack$
➁by the Chernoff bounds, we can have
$P(\left|Z-E\lbrack Z\rbrack\right|\ge t)$
=$P(\left|Z-E\lbrack Z’\rbrack\right|\ge t)$
=$P(e^{\lambda\cdot\left|Z-E\lbrack Z’\rbrack\right|}\ge e^{\lambda\cdot t})$
$\le E\lbrack e^{\lambda\cdot\left|Z-E\lbrack Z’\rbrack\right|}\rbrack\cdot e^{-\lambda\cdot t}$
$\le E\lbrack e^{\lambda\cdot E\lbrack\left|Z-Z’\right|\rbrack}\rbrack\cdot e^{-\lambda\cdot t}$
➂given that $S\in\{+1,-1\}$, a Rademacher random variable, and $S\cdot (Z-Z')$ and $Z-Z'$ have the same distribution, it implies that
$E_Z\lbrack E_{Z’}\lbrack e^{Z-Z’}\rbrack\rbrack$
=$E_Z\lbrack E_{Z’}\lbrack e^{S\cdot (Z-Z’)}\rbrack\rbrack$
=$E_{Z,Z’}\lbrack E_{S}\lbrack e^{S\cdot (Z-Z’)}\rbrack\rbrack$
Then, below holds,
$E_Z\lbrack E_{Z’}\lbrack e^{\lambda\cdot (Z-Z’)}\rbrack\rbrack$
=$E_Z\lbrack E_{Z’}\lbrack e^{S\cdot\lambda\cdot (Z-Z’)}\rbrack\rbrack$
=$E_{Z,Z’}\lbrack E_{S}\lbrack e^{S\cdot\lambda\cdot (Z-Z’)}\rbrack\rbrack$
➃by MGF, we have below holds
$E_{S}\lbrack e^{S\cdot\lambda\cdot (Z-Z’)}\rbrack\le e^{\frac {(\lambda\cdot (Z-Z’))^{2}}{2}}$
Because $\left|Z-Z'\right|\le (b-a)$ guarantees $(Z-Z')^{2}\le (b-a)^{2}$ , then
$E_{S}\lbrack e^{S\cdot\lambda\cdot (Z-Z’)}\rbrack\le e^{\frac {(\lambda\cdot (b-a))^{2}}{2}}$
Therefore, $E_Z\lbrack E_{Z’}\lbrack e^{\lambda\cdot (Z-Z’)}\rbrack\rbrack\le e^{\frac {(\lambda\cdot (b-a))^{2}}{2}}$